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Leveraging Class Balancing Techniques to Alleviate
Algorithmic Bias for Predictive Tasks in Education

Lele Sha, Mladen Raković, Angel Das, Dragan Gašević, Guanliang Chen

Abstract—Predictive modelling is a core technique used in
tackling various tasks in learning analytics research, e.g., classi-
fying educational forum posts, predicting learning performance,
and identifying at-risk students. When applying a predictive
model, it is often treated as the first priority to improve its
prediction accuracy as much as possible. Class balancing, which
aims to adjust the unbalanced data samples of different class
labels before using them as input to train a predictive model,
has been widely regarded as a powerful method for boosting
prediction accuracy. However, its impact on algorithmic bias re-
mains largely unexplored, i.e., whether the use of class balancing
methods would alleviate or amplify the differentiated prediction
accuracy received by different groups of students (e.g., female
vs. male). To fill this gap, our study selected three representative
predictive tasks as the testbed, based on which we (i) applied
two well-known metrics (i.e., hardness bias and distribution
bias) to measure data characteristics to which algorithmic bias
might be attributed; and (ii) investigated the impact of a
total of 11 class balancing techniques on prediction fairness.
Through extensive analysis and evaluation, we found that class
balancing techniques, in general, tended to improve predictive
fairness between different groups of students. Furthermore, class
balancing techniques (e.g., SMOTE and ADASYN), which add
samples to the minority group (i.e., over-sampling) can enhance
the predictive accuracy of the minority group while not negatively
affecting the majority group. Consequently, both fairness and
accuracy can be improved by applying these oversampling class
balancing methods. All data and code used in this study are
publicly accessible via https://github.com/lsha49/FairCBT

Index Terms—class balancing, machine learning, algorithmic
bias

I. INTRODUCTION

In the age of big data, predictive modelling has been
applied to automate a plethora of labour-intensive tasks in
education. For instance, researchers have been interested in
applying Machine Learning (ML) models in online discussion
forums to categorize student posts in terms of post urgency
(whether it requires immediate attention from the instructor)
[1], confusion (whether it requires instructor’s response on a
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course-related question that a student asked) [2], and sentiment
(whether positive or negative emotions emerge from discussion
posts) [3]. Researchers have also applied ML models to
preempt student dropout by identifying students who are likely
to fail a course based on their interactions with different course
resources in digital learning environments, e.g., attempting
weekly quizzes and viewing lecture videos [4]. Other applica-
tions include automated assessment grading [5], identification
of discourse and argumentative elements in student writings
[6], and knowledge tracing in students’ learning processes
over semester [7]. Based on this increasing trend, we can
only expect interest in predictive models, particularly those
dealing with classification problems, to continue growing in
the learning analytics research community in the coming years.

Often, researchers need to address the problem of class
imbalance in real-world datasets, where there is an unequal
ratio of different classes in the data samples - e.g., when
detecting cognitive presence applied to online discussion mes-
sages [8], [9], over 30% of the messages are of the exploration
type cognitive label, and only 6% are of the resolution type
label. Similarly, when predicting students who are unlikely to
complete a MOOC, the number of students who successfully
completing the course hardly ever exceed 25% [10]. One
promising approach for mitigating this problem is to apply
Class Balancing Techniques (CBTs) to over-sample the class
labels with less data samples or under-sample the class labels
with more data samples to help reach parity in the training data
[11]. CBTs have traditionally been applied to help datasets
reach comparable amount in different classes [12], [13]. As a
result, higher prediction accuracy of the minority class samples
can be attained by training models with re-sampled datasets
[14], [15].

While researchers continue to achieve new accuracy bench-
mark across different educational modelling tasks including
forum post classifications [16] and dropout predictions [4],
the impact of such models’ predictions on students in online
education and learning experience has raised concerns about
the biases of the ML models [17], [18]. At times, unintentional
discrimination (i.e., biased predictive accuracy against certain
groups) may be happening due to factors like demographic im-
balance, where certain demographic groups (e.g., gender, race)
are under-represented in the dataset [19]. Gender imbalance
(i.e., the data samples pertinent to students of different genders
are unequal), for instance, is common across various courses
and learning platforms [20], [17]. Previous research has shown
that predictive models that were trained using datasets with a
small sample size on distinct groups of people, such as those
of different genders, race, or language groups, can cause and
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reinforce unintended bias [17], [19]. Unfortunately, samples
from different groups rarely reach comparable quantity in
most real-world data collections in education [20], [21], e.g.,
female students have been traditionally under-represented in
STEM courses with only around 1 in 5 learners in a STEM
MOOC being female [21]. Given that the predictive models
have been widely adopted to empower teaching effectiveness
— e.g., instructors may offer a timely intervention to students
based on the results of dropout prediction and instructors may
also provide forum responses to those classified as urgent
posts — biased prediction resulted from under-represented
demographic groups in training data may cause unintentional
bias in teaching support.

In recent years, researchers proposed that using CBTs
could also potentially mitigate the issue of under-represented
groups in datasets and enhance fairness of predictive models
[19], [8], [22], [23]. However, to date, the effectiveness of
such approaches still remains relatively unexplored, due to
the lacuna in research that aims to systematically evaluate
effectiveness of existing CBTs of different types (e.g., under-
sampling and over-sampling) when applied to representative
educational modelling tasks.

Hence, in this study we sought to assess the impact of
popular state-of-the-art CBTs on algorithmic bias in predictive
modelling tasks in education. Formally, this study was guided
by the following Research Question:

RQ To what extent can class balancing techniques affect
fairness by re-balancing datasets to minimise the pre-
dictive parity between different demographic groups?

To answer the RQ, we conducted experiments on three long-
standing educational modelling tasks, namely student dropout
prediction, student performance modelling, and forum post
classification. We first evaluated to what extent bias existed
in original datasets in terms of demographic distributions of
different groups (denoted as distribution bias) and difficulty
levels of making a correct prediction across different groups
(denoted as hardness bias). Then, for each task, we replicated
the model that has been well-documented in the literature
and has been shown to achieve the benchmark prediction
accuracy in previous studies. We selected a Convolutional
Neural Network (CNN) based model [4] for the student
dropout prediction, a Random Forest model for the student
performance modelling, and an CLSTM (Convolutional Long
Short-Term Memory) model [24] for the forum classification
task. We selected a total of 11 representative CBTs of under-
and/or over-sampling and input re-balanced samples to train
the selected models. This study was approved by the Human
Research Ethics Committee at an Monash university (Project
ID 30074). The main findings are as follows:

• Bias in terms of distribution and hardness generally
existed in the three educational datasets prior to model
training. Furthermore, hardness bias tended to be associ-
ated with algorithmic unfairness.

• Most of the CBTs tended to improve fairness of the
prediction results in at least two out of three educational
modelling tasks. In particular, three CBTs — i.e., Tomek-
Link, SMOTE and SMOTE-TomekLink — improved

fairness in all tasks.
• When fairness was improved by adding more samples

to the under-represented group, the overall prediction
accuracy of the dataset also tended to improve.

II. RELATED WORK

A. Predictive Modelling in Learning Analytics
As a result of the development and use of various on-

line tools and systems for distance learning, rich student
activity data are generated. By applying machine learning
based models, researchers and practitioners are able to solve
various challenges in learning analytics that were traditionally
difficult to tackle. Joksimović et al. [25] categorised two core
research areas in learning analytics, namely predictive analyt-
ics and discourse analytics. The aim of predictive analytics
is to facilitate student learning by predicting their learning
outcomes in advance. The most prevalent use case has been
to mitigate the notoriously criticised low completion ratio of
MOOCs [26], [4]. Researchers have devoted their attention
to predicting student performance to preempt their risks of
dropout [4], [26], i.e., students at risk of failing or dropping
out of a course are identified based on data about their
learning activities. Consequently, instructors may intervene
and provide necessary support to those students. Discourse
analytics are mainly concerned with the analysis of textual
data generated by students and instructors to facilitate teaching
and learning. A notable example of discourse analytics is
automatic classification of online forum posts. While the
adoption of online discussion forums can help form a learning
community that supports effective student-student and student-
instructor interaction much like a traditional classroom-based
learning environment [27], the sheer volume of posts to online
discussion forums generated by tens of thousands of students
may overwhelm teaching teams. The research on automatic
classification of forum posts produced computational models
that can effectively identify relevant posts for instructors,
and enable them to provide a timely and tailored response
to students. Previous studies proposed applying automatic
classification models for analyzing various online discussion
messages such as to identify course content-related questions
[28], to detect confusion in students’ posts [29], to detect stu-
dent achievement emotions [30], to detect social and cognitive
presence [31], and to identify the level of urgency expressed
by students [1].

Despite rigorous efforts by various researchers in predic-
tive modelling in education, existing studies often stressed
accuracy as the main dimension to improve. Take forum post
classification for example. Traditional ML models such as
Support Vector Machine (SVM) and Gradient Boost (GB)
have been widely applied and a variety of studies proposed
novel features to be engineered (e.g., hash tags on discussions
[32], domain specific words [33]) to attain improved accuracy.
In recent years, researchers have moved forward to exploit
developments of more powerful deep learning (DL) models
(e.g., LSTM) and pre-trained language models (e.g., BERT)
to seek further accuracy improvement for various forum clas-
sification tasks like urgency [16], sentiment [34] and question-
identification [24].
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B. Dealing with imbalanced datasets

One common problem that predictive modelling face is im-
balanced datasets, which can cause under-represented minority
class samples to be insufficiently trained by the ML model,
hence undermining the predictive accuracy of the model [35],
[36]. Previous studies [15], [37], [14] have proposed to balance
the majority and minority class samples by applying CBTs to
re-sample the original dataset so as to boost the predictive
accuracy. For example, Cavalcanti et al. [14] applied SMOTE
to re-balance samples of different feedback levels and used the
balanced samples to predict whether the feedback provided by
instructors was of a high quality. The authors achieved an ac-
curacy of up to 87%, which had around 2% improvement over
the model without SMOTE. In general, researchers typically
apply three strategies to help reach parity among different class
samples, namely, under-sampling the majority group, over-
sampling the minority group, and a hybrid of under- and/or
over-sampling. A summary of the popular CBTs is provided
in Table I.

The easiest under-sampling CBT is to remove samples
from the majority group randomly, denoted as random under-
sampling [38]. However, researchers have noted that down-
sizing the majority group randomly could easily lead to the
dataset losing meaningful information which then can cause
predictive accuracy to decline [11], [38]. More sophisticated
approaches have been designated to avoid this shortfall. For
instance, Condensed Nearest Neighbors [39] is among one
of the earliest CBTs which iteratively decides whether a
sample should be deleted based on one nearest neighbour.
Further, a CBT named Edited Nearest Neighbors [40] utilised
k nearest neighbors which can help identify noisy or borderline
samples and remove them. Another approach, Near Miss [41]
selects samples to remove by average distances of the nearest
neighbours. Lastly, TomekLink [42] identifies pairs of nearest
neighbors and removes the majority sample until there is no
minimally distanced nearest neighbor pairs of major and minor
group.

In contrast to under-sampling, over-sampling CBTs aim to
add samples to the minority group to help reach a comparable
sample size with the majority group. Synthetic Minority Over-
sampling Technique or SMOTE is probably the most popular
over-sampling CBT which is usually regarded as one of the
most powerful approaches for over-sampling [12]. However,
researchers noted that SMOTE-generated samples may be sub-
ject to noise issues [35], [43]. To remedy this, a few SMOTE
variants have been proposed. For example, SMOTE (K-means)
[35] uses k homogeneous subgroups to eliminate generated
noise, and borderline SMOTE [43] only generates minority
samples at borderline to prevent noisy samples. Lastly, as
an alternative to SMOTE-based approaches, ADASYN [44]
is proposed to generate more samples based on the different
neighborhood rule which is shown to be more effective than
SMOTE in terms of noise reduction.

Either over-sampling or under-sampling approaches have
been shown to be effective when used alone [12], [37],
[14], [15]. However, in recent years, a combination of mul-
tiple under- and/or over-sampling CBTs have been proven to

achieve better accuracy performance for imbalanced datasets
[36], [45]. Existing studies have proposed combinations of
several popular CBTs such as one over-sampling and one
under-sampling (e.g., SMOTE and TomekLink) [45], the com-
bination of Tomek’s link with SMOTE has been shown to be
able to eliminate excessive noise from SMOTE [46]. Another
popular CBT combination is to apply two under-sampling
(e.g.,Tomek’s link and Condensed Nearest neighbor) which is
formally known as One-Sided Selection [47], and the resulting
sampling process can have the advantages of both technique.
For example, the ambiguous link points are removed by
Tomek’s link, and then the redundant points from decision
boundary are removed by Condensed Nearest Neighbor.

C. Data imbalance and bias
Even prior to model training, bias may exist in datasets.

Existing research notes that one important factor causing
prediction bias is data imbalance where certain demographic
group (e.g., male students) is over or under-represented in
the datasets [17], [19]. Given the impact of dataset bias on
predictive fairness, Yan et al. [19] suggested two important
metrics to quantify bias in a dataset, namely distribution
and hardness bias. Specifically, distribution bias refers to a
scenario where there is an uneven distribution of samples
from different demographic groups, e.g., there is more male
samples than female samples. This may cause the model to be
insufficiently trained on the minority group samples, which,
in turn, may result in unsatisfactory prediction performance
relative to the minority group. However, even with an equal
sample distribution among different groups (e.g., the same
number of male and female samples), the dataset may still
be biased in terms of hardness, i.e., samples from one group
may be more difficult to predict correctly than those from
the other group. Yan et al. [19] propose to use k-Disagreeing
Neighbors (kDN) to measure the hardness bias. To put it
simply, kDN measures to what extent an instance overlap (in
terms of Euclidean distance) with its k nearest neighbors which
do not belong to the same class.

When it comes to the field of learning analytics, existing
works on measuring predictive bias are typically based on
one or several of the following definitions of algorithmic
fairness including statistical parity [52], equalised odds [53],
and equalised opportunities [53]. For instance, when trying
to detect bias in modeling student performance, most of the
existing studies have focused on measuring whether there is
a predictive disparity between different demographic groups
in line with the definition of equalised odds/opportunities
[17], [54], [55], [18], [56]. To the best of our knowledge,
only one study [57] systematically evaluated data bias (i.e., an
unequal representation of different groups of people/students
in the training data) alongside predictive bias in an educational
context. In their work, Deho et al. [57] debiased training
data during the data pre-processing step and ensured that the
numbers of samples/records specific to native English and non-
native English students are equal in the training data, which are
then used to train models for student dropout prediction. The
results show that both the baseline model and the fairness-
aware models tend to replicate data biases in the prediction
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TABLE I: A summary of the class balancing techniques. The techniques included in this review are denoted as Yes under the
column Included.

Category Techniques Description Used in studies Included

Under
sampling

Tomek’s links Remove samples identified on the
Tomek’s link. [42], [23]

Yes

Edited Nearest
Neighbours (Edited-NN)

Remove samples by nearest
neighbours rule. [40], [23]

NearMiss Remove samples based on the average
distance from minority class samples. [41], [23]

Condensed Nearest
Neighbour (Condensed-NN)

Remove samples far away from the
decision neighbor iteratively. [39]

Random under-sampling Randomly remove majority samples. [19]
No

Clustering-based
under-sampling

Remove samples by their
representative clustering group. [48]

Inverse random
under-sampling

Severely under sample the majority
class based on clustering group. [49]

Repeated Edited
Nearest Neighbours

Mutli-class resampling method by
Nearest Neighbours rule. [50]

Over
sampling

SMOTE Create synthetic samples of minority
class from their k nearest neighbours. [12], [19], [14], [23], [9]

Yes
SMOTE (K-means) Apply K-means clustering before SMOTE. [19], [35]

SMOTE (Borderline) Add samples from borderline data points. [43]

ADASYN Add samples adaptively by distribution. [44]

Random over-sampling Randomly add minority sample. [19] No

ML SMOTE A multi-label SMOTE variant. [51]

Hybrid
SMOTE-TomekLink Combine SMOTE and TomekLink. [23]

Yes
One-Sided Selection Combine TomekLink and the

Condensed Nearest Neighbor. [47]

Pipeline Pipeline of multiple samplers. [23]

results. However, Deho et al. [57] focused mostly on the distri-
bution side without trying to tackle other aspects of data bias
(e.g., hardness bias). Consequently, the association between
bias at source (i.e., data bias) and predictive outcome (i.e.,
model predictions) may not be fully revealed. We note similar
trend in the broader ML community [58], [59]. In contrast
to existing studies, we conducted a study that included an
evaluation of dataset characteristics in terms of distribution and
hardness bias in three longstanding predictive modelling tasks
in learning analytics. We then further investigated the impact
of CBTs on these dataset characteristics and the subsequent
algorithmic fairness/bias.

III. PRELIMINARIES

A. Educational Predictive Tasks, Datasets, and Models

In this study, we have adopted three datasets, one dataset
for an educational predictive modelling task. All three tasks
were binary predictions (i.e., the prediction label was either
true or false), two of which were from predictive analytics

(i.e., dropout prediction and performance prediction) and one
task was from discourse analytics (i.e., classification of online
forum discussions). For all datasets, we focused on evaluating
the fairness of predictive performance between different gen-
der groups (i.e., male and female students), given the preva-
lence of gender imbalance in higher education and MOOCs
as noted in Section II-B. In terms of models, predictive mod-
elling tasks typically adopt either traditional machine learning
(ML) (e.g., Support vector machine, Random Forest) or deep
learning (DL) (e.g., Long Short-Term Memory, Convolutional
Neural Network) models. We selected a representative model
per predictive modelling task by considering whether: (i) the
model is used and thoroughly documented in the previous
work; and (ii) the model has been shown to achieve the
benchmark prediction performance. The details of each task,
datasets and models are provided below.

Forum post classification: Moodle dataset. The Moodle
dataset included 3,703 forum discussion posts authored by
Monash University students in subjects including arts, busi-
ness, design, computer science, economics, and engineering.
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TABLE II: The descriptive statistics of the dataset used in this study. The columns Male, Female, show the number of forum
posts generated by male and female students, respectively.

Datasets Modelling tasks Attributes All Male Female

Moodle Forum post classification

# Posts 3,703 1,478 2,225

# Words 485,737 171,768 308,087

# Avg. words / post 131.39 116.77 138.90

# Unique words 268,824 97,004 170,171

# Avg. unique words / post 72.71 65.94 76.72

KDDCUP (2015) Student dropout prediction

# Enrollments 180,785 124,742 56,043

# Dropout 148,118 105,164 42,954

# Video activities 1,208,821 821,998 386,823

# Avg.video activities 6.69 6.59 6.90

# Web page activities 6,878,176 4,539,596 2,338,580

# Avg.web page activities 38.05 36.39 41.73

OULA Student performance modelling

# Enrollments 24,806 13,544 11,262

# Pass 12,362 6,619 5,743

# Clicks 73,301 42,739 30,562

# Avg.clicks 2.95 3.16 2.71

To ensure the labels’ correctness, we first engaged a junior
teaching staff member to manually label the posts, and then
hired two senior teaching staff to independently evaluate and
correct the labels to reach high agreement of annotated labels.
Using the Moodle dataset enabled us to perform a classifi-
cation task of identifying whether a post is relevant (e.g.,
“What is the difference between non-complex and complex
number?”) or irrelevant (e.g., “How do I access lecture zoom
link?”) relative to the course content. Therefore, the classes
contained in the labels are binary, either true for content-
relevant, or false for content-irrelevant.

To perform forum post classification, we replicated a pop-
ular CLSTM model inspired by previous studies [60], [61],
[24], [16], which reported state-of-art prediction accuracy of
80% to 90% depending on datasets used. Since DL models
require at least tens of thousands of post data to be sufficiently
trained, Moodle dataset alone cannot suffice the training of this
model. Therefore, we applied a pre-trained language model
called BERT [62] to generate post embeddings which is a well-
investigated approach in previous research and the broader
natural language processing (NLP) community [34], [63], [64].
The existing research has shown that BERT a) achieved su-
perior performance over other embedding generation methods
and b) can be coupled with a task model to fine-tune the model
hyper-parameters. This co-training strategy is shown to be able
to tune hyper-parameter with only a few thousand data samples
[62], [64], [16], which was applicable to our Moodle dataset.

Student dropout prediction: KDDCUP (2015) dataset. The
KDDCUP dataset is made up of 39 courses which enrolled
180,785 students in the popular online learning platform Xue-

TangX. The dataset was used in the KDDCUP competition in
2015 which attracted in total 821 participants to predict student
dropout using the dataset. The benefit of including KDDCUP
dataset is twofold. First, this is one of the few public MOOC
datasets that published demographic information of students
(e.g., gender), and therefore, enabled fairness evaluation of
predictive performance among different demographic groups.
Second, KDDCUP is a widely used public datasets with
extensive modelling efforts, and hence, the dataset allowed
a replication of an existing model which can bring deeper
understanding of the previous work [4]. The classes contained
in the labels are binary, either true which indicates that student
dropped out of the course, or false which means non-dropout.

To our knowledge, [4] proposed the state-of-the-art model
for this dataset, i.e., the Context-aware Feature Interaction
Network (CFIN) model, which proposed a context-smoothing
structure to handle feature augmentation, embedding, and
feature fusion, followed by an attention-based interaction
adopting an CNN model to learn and predict dropout prob-
ability. The CFIN model demonstrated around 90% AUC
performance, outperforming other models by around 2% in
dropout prediction using the KDDCUP dataset. Therefore, we
replicated this work with the same feature inputs engineered
from student activity data including: video, forum and assign-
ment. The model is available in the public repository1.

Student performance modeling: OULA dataset. The OULA
(Open University Learning Analytics) dataset included in-
formation from courses taught at the Open University (OU)

1https://github.com/wzfhaha/dropout prediction

This article has been accepted for publication in IEEE Transactions on Learning Technologies. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TLT.2022.3196278

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Monash University. Downloaded on August 09,2022 at 06:04:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. XX, NO. X, XXXXXX 20XX 6

[65]. Similar to KDDCUP, the OULA dataset was one of
the few public datasets which published student demographic
information. The dataset included aggregated clickstream data
from 24,806 students’ interactions in the Virtual Learning
Environment (VLE) on 22 courses. The classes contained in
the labels are binary, either true which indicates student passed
the course, or false which indicates student did not pass the
course.

Given that OULA is a relatively recent dataset compared to
KDDCUP, fewer studies have been published using the OULA
dataset. One of which is open university analytics, which used
the Random Forest model and reported around 80% prediction
accuracy in student performance modeling with engineered
features from a range of attributes such as module click stream
activity, student age band and number of previous attempts,
etc. The work has a public repository2.

We summarized the three datasets statistics in Table II.

B. Evaluation Metrics

Data bias. We used two metrics to measure potential bias
hidden behind the training data, including:

• Distribution bias, which refers to the distribution dif-
ference between samples from different demographic
groups, e.g., the different numbers of training samples
pertinent to male and female groups in a dataset. There-
fore, we evaluated distribution bias by measuring the dis-
tribution of male and female samples of original datasets,
and compared the results with that of the balanced (via
CBTs) counterpart.

• Hardness bias, which refers to the degree to which
data instances contained in a dataset are difficult to be
correctly labelled. More specifically, if a data instance
does not share the same task label with most of its k-
nearest neighbors, then it tends to be difficult to correctly
label this instance. Similar to the work presented in [66],
[19], we used k-Disagreeing Neighbors (kDN) to measure
the local overlap of a data instance with its k-nearest
neighbors (identified by calculating their Euclidean dis-
tance) regarding their task labels. A large kDN (close
to 1) indicates that the data instance is difficult to be
correctly classified. We chose k = 5 to calculate the
kDN of an instance (as suggested in [19]). If the kDN
distribution of a student group (e.g., female) is different
from that of the other group (e.g., male), there exists
hardness bias between the two groups, which can be
calculated by applying the Jensen-Shannon distance (a
symmetric version of the Kullback–Leibler divergence
with a finite value).

Predictive accuracy. Similar to previous studies on the three
tasks we investigated [4], [17], [67], we also adopted Area
Under the Curve (AUC) to measure the predictive accuracy of
a ML model.
Predictive fairness. We measured predictive fairness by using
the metric Absolute Between-ROC Area (ABROCA) [17],
which has been widely adopted in previous studies [68],

2https://github.com/gogoladzetedo/Open University Analytics

[69], [70]. Similar to other group-level fairness metrics (e.g.,
equalised odds/opportunity [53]), ABROCA measures the dif-
ference of the predictive accuracy between groups of students
(e.g., male and female) as the bias displayed by an ML model.
ABROCA is calculated by computing the definite integral
between the ROC curves of two protected groups, representing
the absolute difference between the two ROC curves at all
thresholds. Therefore, the entire range of thresholds is ac-
counted for rather than just using a single fixed threshold.
This enables the calculation of ABROCA to be independent
of the modelling process and the ABROCA value can be easily
computed as a post-prediction step after ROC calculation. Note
that since ABROCA represents the total ROC area difference
between two group (e.g., male and female groups), a larger
ABROCA value is indicative of a higher predictive bias.

IV. METHODS

A. Class balancing techniques

Existing CBTs can be categorized into three groups: under-
sampling, over-sampling and a hybrid of under- and/or over-
sampling, as summarized in Table I. As we aimed to enable
an in-depth understanding of the impact of class balancing
techniques on algorithmic fairness, we chose a set of repre-
sentative techniques from each group based on the following
criteria: (i) the techniques are widely adopted and replicated
by different researchers; (ii) as we tackled binary classification
tasks in this study (i.e., content-relevant vs. content-irrelevant),
we only included single-class sampling techniques (as opposed
to multi-class); and (iii) random sampling techniques (e.g.,
random under- and over-samplings) were excluded given that
they could potentially discard useful data and cause over-
fitting as noted in [38], [36]. Based on the selection crite-
ria, we included (i) four under-sampling techniques: Tomek’s
links, Near Miss, Edited Nearest Neighbour(Edited-NN) and
Condensed Nearest Neighbour(Condensed-NN); (ii) four over-
sampling techniques: SMOTE, SMOTE (K-means), SMOTE
(Borderline) and ADASYN; (iii) three combined sampling
techniques: SMOTE Tomek’s links (one over-sampling and one
under-sampling where the dataset first went through the over-
sampling process, then noisy/redundant samples were removed
by applying an additional under-sampling step), and One-Sided
Selection (combined two under-sampling techniques, where
the ambiguous link points were first removed by Tomek’s link,
then the redundant points from decision boundary removed
by Condensed Nearest Neighbor); and (iv) a combination of
the top-4 best performing CBTs into a single pipeline (i.e.,
combined two best under-sampling and two best over-sampling
into a pipeline of re-sampling processes, where over-sampling
CBTs were applied first, followed by the under-sampling
CBTs to eliminate noise from the generated samples).

B. Study Setup

Data pre-processing involved the following steps:
• For all our experiments, we first extracted model input

(i.e., features for the KDDCUP and OULA datasets, and
embeddings for the Moodle dataset) for each predictive
modelling task.
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Fig. 1: Distribution of original samples and class balanced samples

• For KDD dropout prediction task, a total of 22 features
were extracted from student activity data including: num-
ber of views of video content, questions and answers
posted on a forum and average correct answers and
number of revises in an assignment.

• For the OULA student performance modeling task, a total
of 112 features were extracted from a range of attributes
such as module click stream activity, student age band,
and the number of previous attempts.

• For the Moodle forum post classification task, we first
pre-processed the text contained in a post by 1) elimi-
nating invalid characters; 2) removing stopwords; and 3)
using the Natural Language Toolkit to apply word stem-
ming. Then, BERT embedding of posts were generated
by using Bert-as-service3.

• After feature inputs were extracted, we divided them into
the training/testing split with 80%/20% ratio, with 80%
being the training set while 20% being the testing set.
During training, 10% of the training data was chosen at
random as validation data, and the best model was chosen
based on the validation error.

Class balancing. We performed class balancing on the training
set to ensure parity between the demographic (i.e., gender)
groups. The class balancing techniques used are detailed in
Table I as included. In line with previous studies [19], [23],
[14], all CBTs were implemented using popular Python library
imbalanced-learn4.

Model implementation. For KDDCUP dropout prediction, we
replicated the CFIN model from [4] repository5. The model
contained a Deep Neural Network (DNN) based attention layer
and a CNN based context-smoothing layer. The DNN was
implemented with 32*32 deep layers with dropout ratio set to
0.5. The CNN was implemented with 32 convolution filters
with a width of 8. During training, (i) the learning rate was
set to 0.001 with Adam optimizer; (ii) epoch was set to 10
and batch size set to 256; (iii) loss type was set to logloss.
At the conclusion of each epoch, 10% of the training data
was chosen at random to serve as validation data. Based on
validation error, we choose the best model.

3https://github.com/hanxiao/bert-as-service
4https://imbalanced-learn.org/
5https://github.com/wzfhaha/dropout prediction

For OULA student performance modeling, we replicated
the Random Forest model from Open University Analytics6.
The model was implemented using the sklearn package7. We
applied the GridSearchCV package to find the best model
hyperparameters to optimise the performance.

For the Moodle forum post classification task, the CLSTM
model was implemented using tensorflow 8. The model param-
eters were implemented in line with previous similar studies
in [60], [61], [24], [16]. The dimension of input layer was set
to 768 (BERT embedding input size) with 1 hidden units in
the final sigmoid output layer, with L2 regularizer lambda set
to 0.001. We used 128 convolution filters with a width of 5 for
the CNN network, and 128 hidden states and 128 cell states
for the LSTM network. During training: (i) the batch size was
set to 32, and the maximum input text was set to 512; (ii)
the one cycle policy was used for training, with the maximum
learning rate set to 2e-05; (iii) the dropout probability was
set to 0.5; and (vi) the maximum training epochs were set
to 50, with shuffling at the end of each epoch and an early
stopping mechanism. At the conclusion of each epoch, 10% of
the training data was chosen at random to serve as validation
data. Based on validation error, we choose the best model.

V. RESULTS

We first report the extent of which bias existed in the orig-
inal dataset. Then, we report the findings of under-sampling,
over-sampling and hybrid CBTs to re-balance the datasets
to evaluate the predictive parity between male and female
groups. The results are detailed in Table III in terms of AUC
(measuring accuracy) and ABROCA (measuring fairness). We
also presented in Table IV a summary of whether CBTs
contributed to fairness and/or accuracy improvements.

A. Data bias

In line with previous studies [19], we used two bias mea-
surements to evaluate bias in the original datasets prior to
model training, namely distribution and hardness bias. Recall
distribution bias refers to a scenario where the demographic
groups differ in sample size and can cause minority group

6https://github.com/gogoladzetedo/Open University Analytics
7https://scikit-learn.org/
8https://www.tensorflow.org/
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TABLE III: Results on Hardness bias (denoted as H-bias), AUC score and ABROCA. The top 3 best results are in bold. The
fraction in the bracket indicated percentage increase/decrease compared to the baseline. The signs ↑ and ↓ are used to indicate
whether a higher (↑) or lower (↓) value is more preferred in a metric.

Moodle KDDCUP (2015) OULA
Categroy CBTs ↓ H-bias ↑ AUC ↓ ABROCA ↓ H-bias ↑ AUC ↓ ABROCA ↓ H-bias ↑ AUC ↓ ABROCA

Original Baseline 0.021 0.842 0.068 0.034 0.882 0.042 0.021 0.799 0.041

Under
sampling

NearMiss 0.025 (19.05%) 0.835 (-0.65%) 0.074 (8.82%) 0.047 (38.24%) 0.880 (-0.25%) 0.028 (-32.38%) 0.013 (-38.10%) 0.794 (-0.70%) 0.023 (-44.12%)

Edited-NN 0.030 (42.86%) 0.831 (-1.04%) 0.084 (22.94%) 0.015 (-55.88%) 0.877 (-0.61%) 0.019 (-55.24%) 0.027 (28.57%) 0.785 (-1.78%) 0.043 (4.90%)

Condensed-NN 0.027 (28.57%) 0.824 (-1.88%) 0.075 (10.00%) 0.030 (-11.76%) 0.882 (-0.07%) 0.032 (-23.81%) 0.020 (-4.76%) 0.794 (-0.68%) 0.029 (-28.43%)

TomekLink 0.026 (23.81%) 0.831 (-1.05%) 0.060 (-12.35%) 0.030 (-11.76%) 0.879 (-0.35%) 0.026 (-37.14%) 0.023 (9.52%) 0.799 (-0.04%) 0.024 (-41.18%)

Over
sampling

SMOTE 0.015 (-28.57%) 0.833 (-0.79%) 0.069 (1.18%) 0.018 (-47.06%) 0.890 (0.85%) 0.028 (-34.29%) 0.015 (-28.57) 0.800 (0.09%) 0.040 (-1.96%)

SMOTE (K-means) 0.008 (-61.90%) 0.843 (0.31%) 0.058 (-14.71%) 0.0029 (-14.71%) 0.887 (0.53%) 0.049 (17.14%) 0.027 (28.57%) 0.798 (-0.23%) 0.050 (21.57%)

SMOTE (Borderline) 0.017 (-19.05%) 0.834 (-0.74%) 0.080 (18.24%) 0.022 (-35.29%) 0.885 (0.35%) 0.034 (-19.05%) 0.014 (-33.33%) 0.798 (-0.23%) 0.036 (-10.78%)

ADASYN 0.001 (-95.24%) 0.844 (0.44%) 0.055 (-19.41%) 0.033 (-2.94%) 0.883 (0.08%) 0.048 (14.29%) 0.015 (28.57%) 0.797 (-0.25%) 0.030 (-26.47%)

Hybrid
SMOTE-TomekLink 0.014 (-33.33%) 0.840 (0.05%) 0.064 (-6.47%) 0.014 (-58.82%) 0.887 (0.56%) 0.026 (-37.14%) 0.011 (-47.62%) 0.795 (-0.59%) 0.029 (-28.43%)

One-Sided Selection 0.028 (33.33%) 0.822 (-2.17%) 0.074 (8.24.%) 0.032 (-5.88%) 0.881 (-0.10%) 0.042 (-0.95%) 0.010 (-52.38%) 0.798 (-0.19%) 0.018 (-54.90%)

Pipeline (Top-4 CBTs) 0.022 (4.76%) 0.839 (-0.12%) 0.081 (19.41%) 0.015 (-55.88%) 0.886 (0.41%) 0.032 (-23.81%) 0.022 (4.76%) 0.802 (0.26%) 0.049 (19.61%)

(which has less samples than majority group) to be under-
represented in the dataset. Hardness bias is a kDN-based
measure which quantifies how difficult it is to predict an
instance correctly. We summarised our results of distribution
bias of original and after-CBT in Figure 1, due to the limited
space for this paper, we only include the results of applying the
best CBT (i.e., ADASYN, Edited-NN and One-Sided Selection
for Moodle, KDDCUP and OULA respectively) based on the
fairness performance, however we noted similar results were
observed by other CBTs for distribution bias. The hardness
bias of all CBTs were summarised in Table III denoted as
H-bias.

The prevalence of data bias. Both Moodle and KDDCUP
showed distribution bias in the original dataset samples, where
over 60% of forum posts in the Moodle dataset were authored
by female students (Figure 1 (a) Original), and over 68% in
KDDCUP were male student data (Figure 1 (b) Original).
Overall, all three datasets contained distribution and hardness
bias to some degree, OULA had the lowest distribution bias
with only 9% gap in male and female samples sizes, while
Moodle and OULA had the lowest hardness bias of 0.021.

The power of data balancing. We then applied CBTs to
the three datasets. Overall, all three datasets demonstrated
improvements over distribution bias (based on the after CBT
bar chart in Figure 1), after applying CBT, male and female
samples had almost the same distribution. For the hardness
bias, all three datasets showed improvement ranging from
30% to 90% in the top-3 most improved H-bias (denoted as
bold) compared to the original samples shown in Table III.
We note that OULA showed the least change both in terms
of distribution bias and hardness bias (in top-3 best H-bias)
after the application of CBT. This may be due to the fact that
OULA had a smaller distribution bias originally in comparison
to the other two datasets, and therefore less samples were
removed/added when applying CBTs and resulted in a smaller
change compared to the other two datasets.

TABLE IV: Results on improvement of fairness and accuracy.

Improved Fairness Improved Accuracy
Category CBTs Moodle KDDCUP OULA Moodle KDDCUP OULA

Under
sampling

NearMiss
√ √

Edited-NN
√

Condensed-NN
√ √

TomekLink
√ √ √

Over
sampling

SMOTE
√ √ √ √

SMOTE (K-means)
√ √ √

SMOTE (Borderline)
√ √ √

ADASYN
√ √ √ √

Hybrid
SMOTE-TomekLink

√ √ √ √ √

One-Sided Selection
√ √

Pipeline (Top-4 CBTs)
√ √ √

B. Predictive fairness and accuracy

Given the promising findings in the distribution and hard-
ness bias, we were motivated to use the samples changed with
CBTs to train respective models in each of the three predictive
modelings task and present the prediction results in terms of
both accuracy (measured by AUC) and fairness (measure by
ABROCA). The results of AUC and ABROCA of the three
predictive tasks are reported in Table III. We also summarised
the results in terms of whether each CBT showed fairness
improvement and/or accuracy improvement in Table IV. Note
that the accuracy improvement was represented by an increase
over the baseline AUC after the application of CBTs, while
fairness improvement was represented by a decrease over the
baseline ABROCA after application of CBTs (since ABROCA
was a total difference of ROC areas between male and female,
a smaller ABROCA indicated more parity between the male
and female groups in terms of predictive accuracy).

The impact of data balancing on predictive fairness. We
observed that most of the CBTs helped improve fairness
in educational modelling tasks (i.e, 8 out of the 11 CBTs
improved fairness in at least two out of the three tasks). In
particular, TomekLink and SMOTE-TomekLink were shown
to improve fairness across all three educational tasks (i.e.,
Moodle, KDDCUP and OULA). Further, the best performing
CBTs in KDDCUP and OULA lead to over 50% of the
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Fig. 2: AUC score of male and female in over-sampling CBTs

ABROCA reduction, which indicates that the gap in predictive
parity between male and female students was reduced by
more than 50%. Compared to KDDCUP and OULA, the
best performing CBT in Moodle had smaller improvement of
around 20% of the reduction in ABROCA. One reason may
be that the Moodle dataset had only 3,703 posts included,
significantly smaller in size compared to KDDCUP and OULA
(see Table II). Therefore, less samples were generated/removed
as a result of applying the CBTs. This implies that sample size
could be a factor in effectiveness of fairness improvement by
CBTs. Besides, we also observed that hardness bias tends to be
associated with fairness, where an improvement on hardness
bias (denoted as H-bias in Table III) of the datasets by an
CBT also had improvement on fairness, e.g., all 6 CBTs which
improved hardness bias also improved ABROCA in the OULA
dataset. This indicated that decrease in hardness bias of a
dataset could potentially help reduce the algorithmic bias.

The impact of data balancing on predictive accuracy.
Compared to fairness improvement, accuracy was almost
exclusively improved by over-sampling techniques, with the
exception of SMOTE-TomekLink and the pipeline of top-4
class balancing techniques, in which cases under-sampling was
combined with over-sampling techniques and were shown to
improve accuracy. Further, the worst accuracy performance
(measured by AUC) was achieved by under-sampling CBTs in
all three tasks, e.g., One-Sided Selection (which combined two
under-sampling techniques) had the worst AUC performance
in the Moodle task, while Edited-NN had the worst AUC in
KDDCUP and OULA. This indicated that over-sampling CBTs
may be more preferable than under-sampling CBTs in cases
where both accuracy and fairness are important in a modelling
task. We also observed that accuracy improvement tended to
happen simultaneously when there was fairness improvement
by an over-sampling CBT, e.g., in Moodle, the accuracy-
improving CBTs were also improving fairness, and in KDD-
CUP, 4 out of 6 over-sampling CBTs improved both fairness
and accuracy. This indicated that there was no direct trade-off
relationship between fairness and accuracy, i.e., when applying
CBTs to datasets, the improvement of prediction fairness for
one group of students is not dependent on the sacrifice of
prediction accuracy for another group of students. To further
investigate the reasoning behind this, we looked into the AUC
of each gender group, i.e., male and female AUC (denoted as

M-AUC and F-AUC) in Figure 2. The under-sampling CBTs
were omitted as they did not improve accuracy. We noted
that most of the over-sampling CBTs were improving the
gender group that had worse AUC (denoted as minority group)
compared to the other gender group (denoted as majority
group) in the baseline (i.e., no CBT applied), e.g., female AUC
(F-AUC) after the application of CBTs were higher than the
baseline F-AUC in KDDCUP (Figure 2(b)). Similar patterns
were also observed in Moodle and OULA where the CBTs
were shown to improve on the minority group AUC. However,
we did not observe a consistent improvement/reduction of
AUC after the application of CBTs to the majority group
compared to the baseline, i.e., the majority group AUC after
the application of CBTs could either slightly under- or out-
perform the baseline. Therefore, under the scenario where the
minority group had a better AUC (which is highly likely a
result after applying over-sampling CBTs), both fairness and
accuracy can be improved if the majority group AUC did not
decline, or only declined marginally (i.e., the decline is not
large enough to offset the gains in the minority group).

VI. DISCUSSION

Applying modelling approaches to online education is in-
creasingly popular in the age of big data. However, the bias
of the prediction results could prevent minority group students
from receiving the same high-quality teacher assistance as a
result of applying the ML model. Given the wide adoption of
CBTs for boosting the prediction accuracy of those modelling
approaches, this study evaluated the effects of CBTs on model
prediction bias between male and female students across three
longstanding educational tasks.

We highlighted the following contributions of this study
to the existing literature. First, we included in this study an
assessment of dataset characteristics in terms of distribution
and hardness bias prior to model training, among which the
hardness bias were shown to be potentially associated with
algorithmic unfairness. Second, we investigated the effects of
a total of 11 CBTs of three types, namely, under-sampling,
over-sampling, and a hybrid of these two, therefore allowing us
to show the effect of CBTs on algorithmic fairness/unfairness.
Third, different from previous work [19], [56], we evaluated
predictive accuracy alongside fairness, and demonstrated how
different CBTs affect the interplay between accuracy and
fairness.
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A. Implications

Firstly, we showed that all datasets had bias to a certain
degree originally, two out of the three datasets had over 60%
of samples in either male or female group. It also appeared that
members from one gender group were more difficult to predict
than members from the other. This implies that bias existed
to a certain degree in real-world educational datasets, and
applying such biased datasets where a demographic group was
under-presented could easily lead to the model neglecting the
minority group. Ideally, such bias should be addressed during
the data collection stage. However, in real-world applications,
this is often not possible and researchers may consider data
pre-processing strategies (such as applying CBTs) to ensure
parity of group representations in the dataset, as demonstrated
in Table III, such CBT-balanced datasets can have lower
hardness bias and may consequently lead to lower algorithmic
bias.

Secondly, we found that applying CBTs to re-balance
datasets was a promising approach in reducing predictive
parity among different gender groups. In fact, most of the
CBTs improved fairness in at least two out of the three
educational tasks, and three CBTs improved fairness in all
tasks. Further, the best performing CBT (i.e., Edited-NN and
One-Sided Selection) reduced the predictive parity (in terms
of ABROCA) by more than 50% in KDDCUP and OULA.
To put it in context, KDDCUP had around 0.025 difference
in AUC between male and female students based on Figure 2
and, given that large MOOC courses typically have hundreds
of thousands of enrolments each year, such predictive bias
could potentially affect tens of hundreds of students who were
demographically under-represented (e.g., gender, race) in the
datasets. These students’ may be neglected by instructors while
posting course related posts on the forum, or being at risk of
dropout or failing the course. By applying CBTs to re-balance
the dataset, the improved predictive parity shown in this study
implied that students of the minority group could receive fairer
attention from instructors and help reduce bias in education.

Lastly, in contrast to previous studies, which typically
neglected the accuracy evaluation when evaluating fairness
[56], [19]. Our study evaluated the effect of CBTs on accuracy
alongside fairness and showed that fairness improvements
tended to be associated with accuracy improvements when
applying over-sampling CBTs. Upon digging deeper into male
and female AUC scores, we found that an improved fairness
was typically associated with an improved AUC score on the
minority group that performed worse (in terms of AUC) than
the other group when models were trained using the original
datases without the application of CBTs. This implies that not
only there is no trade-off between the two, but that improving
fairness may potentially be complementary to accuracy. In
other words, by adopting over-sampling techniques which
generated more minority samples to empower the model to
learn better representations of the minority group, not only
the gap between the minority and majority groups became
smaller, the overall accuracy was also better. Future studies
could follow this line of research and try to design an CBT
method that can enhance both at the same time.

B. Limitations and future research
Firstly, this study focused on student gender groups to

study effectiveness of CBTs on improving bias in predictive
modeling. More studies are needed on other demographic
attributes, such as first-language and education background,
to further validate the results reported in the current study.
Secondly, unlike accuracy metrics, fairness metrics are still
in an early stage of research. The state-of-art fairness metric
ABROCA advanced fairness evaluation in several aspects
noted in Section III-B. We highlight several gaps in the fairness
research which may undermine the adoption of ABROCA: (i)
interpretation of ABROCA is not as straight forward compared
to interpreting accuracy metrics and future studies should aim
to visualise ABROCA results to better represent the level of
fairness/unfairness; (ii) more research should be conducted
to enable a better understanding of the relationship between
an ABROCA value and its practical impact, e.g., how many
students would likely be treated unfairly by a predictive model
with an ABROCA value of 0.1. Thirdly, we found that certain
datasets (e.g., Moodle) received less fairness improvement
from CBTs compared to other datasets. Though we speculated
that this may be due to the dataset had a small number of
records which could cause CBTs to operate on a limited
sample size (and end up generating/removing a limited number
of samples), more research is needed to verify the significance
of sample size when applying CBTs. We plan on conducting
experiments to evaluate CBTs’ effectiveness by experimenting
with training data of different sample sizes in future studies.
Lastly, we acknowledged that bias may occur at any stage of
the ML pipeline, and the present study addressed only the data
aspect of algorithmic biases. Other biases, which may occur
during such phases as the annotation of a training sample [71],
feature engineering [72], and model training [69], were not
tackled in this study. Future works may investigate approaches
to de-bias other aspects of algorithmic bias and how such
de-biasing approaches may be associated with accuracy and
fairness of predictive models.
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