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ABSTRACT
The rising number of Massive Open Online Courses
(MOOCs) enable people to advance their knowledge and
competencies in a wide range of fields. Learning though
is only the first step, the transfer of the taught concepts
into practice is equally important and often neglected in
the investigation of MOOCs. In this paper, we consider
the specific case of FP101x (a functional programming
MOOC on edX) and the extent to which learners al-
ter their programming behaviour after having taken the
course. We are able to link about one third of all FP101x
learners to GitHub, the most popular social coding plat-
form to date and contribute a first exploratory analysis
of learner behaviour beyond the MOOC platform. A de-
tailed longitudinal analysis of GitHub log traces reveals
that (i) more than 8% of engaged learners transfer, and
that (ii) most existing transfer learning findings from the
classroom setting are indeed applicable in the MOOC
setting as well.

INTRODUCTION
The rising number of MOOCs enable people to learn
& advance their knowledge and competencies in a wide
range of fields. Learning, though, is only the first step;
the application of the taught concepts is equally impor-
tant, as knowledge that is learned but not frequently
applied or activated is quickly unlearned [28, 6, 25].

Existing investigations into student learning within
MOOC environments are commonly based on pre- &
post-course surveys and log traces generated within
those environments by the individual learners [15].
While student learning is indeed an important measure
of success, we argue that another key measure is the
amount of learning transfer [17] that is taking place:
do learners actually utilize the newly gained knowledge
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in practice? Are learners expanding their knowledge in
the area over time or do they eventually move back to
their pre-course knowledge levels and behaviours? These
are important questions to address in the learning sci-
ences, and their answers will enable us to shape the
MOOCs of the future based on empirical evidence.

The main challenge researchers face in answering these
questions is the lack of accessible, large-scale, relevant
and longitudinal data traces outside of MOOC environ-
ments. While learners can be uniquely identified within
a MOOC platform, at this point in time we have no gen-
eral manner of capturing their behavioural traces outside
of these boundaries.

Not all is lost though. Social Web platforms (Twitter
being the prime example) have become a mainstay of
the Web. They are used by hundreds of millions of users
around the world and often provide open access to some
— if not all — of the data generated within them. While
most of these platforms are geared towards people’s pri-
vate lives, in the past few years social Web platforms
have also begun to enter our professional lives.

One such work-related social Web platform is GitHub1; it
is one of the most popular social coding platforms world-
wide with more than 10 million registered users. Hob-
byists and professional programmers alike use GitHub to
collaborate on programming projects, host their source
code, and organize their programming activities. As
GitHub was founded in 2007, we have potential access to
log traces reaching several years into the past; moreover,
its continuously increasing popularity will enable us to
observe our learners over years to come. The potential
of GitHub for behavioural mining has long been recog-
nized by the software engineering research community
where GitHub is one of the most popular data sources to
investigate how (groups of) people code.

Thus, for MOOCs with a strong focus on programming
concepts, we consider GitHub to be one of the most de-
tailed and openly accessible sources of learners’ relevant
behavioral traces outside of the MOOC environment it-
self. Concretely, we analyze FP101x2, an edX MOOC
covering basic functional programming concepts. Of the
37,485 learners that registered for FP101x we matched

1https://github.com/
2https://www.edx.org/course/
introduction-functional-programming-delftx-fp101x
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12,415 (33.1%) to their respective GitHub accounts, en-
abling a first large-scale analysis of the uptake of taught
programming concepts in practice.

Here, we are foremost interested in exploring to what
extent the course affects learners after it has ended. We
are guided by the following three Research Questions:

RQ1 To what extent does the transfer of learned con-
cepts take place?

RQ2 What type of learners are most likely to make the
transfer?

RQ3 How does the transfer manifest itself over time?

Based on these guiding questions we have formulated
seven research hypotheses which build on previous re-
search efforts in work-place and classroom learning. In
contrast to our work though, in these settings, the inves-
tigations are mostly based on questionnaires and inter-
views instead of behavioural traces. To the best of our
knowledge, learning transfer has not yet been investi-
gated in the context of MOOCs. Gaining deeper insights
about the (lack of) learning transfer in MOOCs will lead
to more informed discussions on the practical purposes
and benefits of MOOCs. The main contributions of our
work can be summarized as follows:

• We investigate to what extent learning transfer in-
sights gained in work-place and classroom settings
hold in the MOOC context. We find that the majority
of findings are also applicable in the case of MOOCs.

• We introduce the use of external social Web-based
data sources to complement learner traces within
MOOC environments as a means to capture much
more information about MOOC learners.

• We introduce GitHub as a specific large-scale data
source to mine relevant longitudinal behavioural
traces about learners before, during and after a
programming-oriented MOOC.

BACKGROUND
Meaningful, robust educational experiences transcend
rote memorization of facts and leave the learner empow-
ered to take on new problems and practice novel ways
of thinking. In tracking student activity from the learn-
ing context (edX) to a real-world, practical one (GitHub)
over a period of three years, the present study observes
the first two of the three criteria of robust learning as
outlined in [17]: (i) application in new situations dif-
ferent from the learning context, (ii) retained over the
long-term, and (iii) prepares for future learning. Gain-
ing a better understanding of how students apply what
they learn in online learning environments over an ex-
tended time frame enables instructors to design future
courses that induce more robust learning.

Some researchers [27, 26] have begun to look beyond
traces generated in online learning environments, by uti-
lizing post-course surveys or conducting post-course in-
terviews with MOOC students.

Although the early studies of transfer stemmed from ed-
ucational issues, the majority of recent learning transfer
research literature is concerned with work-place train-
ing in Human Resource Development (HRD) [7]. With
the recent influx of student activity data generated from
digital learning environments, we can now empirically
measure not only the rate of transfer, but other con-
tributing factors as well. That, in tandem with the es-
tablished surveying strategies used by HRD, promises to
fundamentally change the way we think about measur-
able learning outcomes.

Learning transfer is the application of knowledge or skills
gained in a learning environment to another context [2].
While training situations in professional environments
have a clear target context (the job), this is not the
case with most academic learning situations. Students
are generally taught a broad set of skills and knowledge
which they may apply in countless ways. This delib-
erately broad definition encapsulates both near transfer
(to similar contexts) and far transfer (to dissimilar con-
texts) [4] and avoids the subjective question of how sim-
ilar or different the learning context is from the target
context, as we are only concerned with whether the stu-
dent transferred the learned skills or knowledge beyond
the learning context.

Due to their rising popularity as a professional devel-
opment tool and their roots as an educational resource,
MOOCs serve as an ideal source of information to gain
new insights on learning transfer. Studies have begun
to discuss the learners’ intention to apply what they’ve
learned in MOOCs but do not continue to track student
activity beyond the learning platform [12]. The present
research aims to reoperationalize [10] the understanding
of learning transfer given the emerging possibilities of
user modeling and learning analytics from the current
standard of reported learning transfer towards observed
learning transfer.

Yelon & Ford [29] offer a key distinction in transfer that
differentiates open and closed skills. Open skill train-
ing programs include “leadership and interpersonal skills
training,” and typical closed skill trainings include “var-
ious technical training and computer software training.”
This emerges as an important distinction. In a study
in which Blume et al. [7] found post-training knowl-
edge (PTK) and post-training self-efficacy (PTSE) to
have similar correlations with learning transfer, PTK
and PTSE for closed skills resulted in lower correlation
coefficients than for open skills. Independent of perfor-
mance, self-efficacy is a person’s self-reported ability to
successfully complete a future task [3]. Knowledge is
measured as a result of a task—answering a quiz ques-
tion correctly indicates possession of that knowledge [7].

Regarding the maintenance and persistence of learn-
ing transfer over time, Blume et al. analyzed how the
amount of time (the “lag”) between the end of training
and the beginning of the transfer study affects learn-
ing transfer. They found that in studies with at least
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some lag time between training and testing, learners ex-
hibited significantly lower post-training knowledge and
post-training self-efficacy than those that tested students
immediately following training [7].

In their survey of training professionals from 150 organi-
zations, [24] report that 62% of employees in their orga-
nization “effectively apply what they learned in training”
to their job immediately, 42% after six months, and 34%
after one year. Other studies directly survey students
in gathering self-reported data about learning transfer
[19]. Another manner by which researchers have mea-
sured transfer is through assessment questions follow-
ing instruction that, in order for students to answer cor-
rectly, would have to apply what they learned to a new
context or problem [20, 1]. The present study exam-
ines transfer as a more naturally occurring, un-elicited
phenomenon that the learners undertake and exhibit on
their own accord.

FP101X
Introduction to Functional Programming (or short
FP101x) is a MOOC offered on the edX platform. The
course introduces learners to various functional program-
ming concepts; all programming is performed in the
functional language Haskell.

The first iteration of the course ran between October 15,
2014 and December 31, 2014. As is common in MOOCs
today, learners were invited to participate in a pre-course
and a post-course survey containing questions on the
motivation of the learners, the perceived quality of the
course, etc. In August 2015 we approached a subset of
learners for an additional post-course survey.

The course was set up as an xMOOC [23]: lecture videos
were distributed throughout the 8 teaching weeks. Apart
from lectures each week, exercises (“homeworks” and
“labs”) were distributed in the form of multiple choice
(MC) questions. While homework questions evaluated
learners on their understanding of high-level concepts
and code snippets (e.g. “What is the result of executing
[...]?”), labs required learners to implement programs
themselves. To enable fully automatic evaluations, all
lab work was also assessed through MC questions. Each
of the 288 MC questions was worth 1 point & could be
attempted once. Answers were due 2 weeks after the re-
lease of the assignment. To pass the course, ≥ 60% of
all MC questions had to be answered correctly.

Overall, 37,485 users registered for the course. Fewer
than half (41%) engaged with the course, watching at
least one lecture video. The completion rate was 5.25%,
in line with similar MOOC offerings [18]. Over 75% of
the learners were male and more than 60% had at least
a Bachelors degree.

METHODOLOGY
We first outline and justify the seven research hypotheses
upon which we ground our work. Next, we describe in

detail how to verify them empirically based on course
questionnaire data, edX logs and GitHub data traces.

Research Hypotheses
Based on prior work we can make the following hypoth-
esis related to RQ1:

H1 Only a small fraction of engaged learners is likely to
exhibit learning transfer.
While previous works, e.g. [24], note transfer rates
of up to 60%, we hypothesize our rate to be much
lower, due to the natural setting we investigate, the
difficulty of the topic (closed skills) and the gener-
ally low retention rate of MOOCs.

A large part of existing literature has focused on the dif-
ferent dimensions of a learner that may be indicative of
a high or low transfer rate. Thus, the following research
hypotheses are all related to RQ2, which focuses on the
type of learner exhibiting transfer.

H2 Intrinsically motivated learners with mastery goals
are more likely to exhibit learning transfer than ex-
trinsically motivated learners.
[22] found that, in academic settings, mastery goals
are more consistently linked to transfer success than
performance goals. This was measured by instruc-
tors guiding students through either mastery- or
performance-oriented experimental conditions and
comparing their assessment scores. In line with in-
trinsic motivation, mastery goals are characterized
by a learner’s intention to understand and develop
new knowledge and abilities. Performance goals, ex-
trinsically motivated, are those sought after in order
to obtain positive judgements from others [9].

H3 Learners expressing high self-efficacy are more likely
to actively apply their trained tasks in new contexts.
In other words, in both academic and professional
settings, if you believe that you are able to do some-
thing, you are more likely to try it [13, 14, 16, 22].

H4 Experienced learners (high ability levels) are more
likely to transfer trained skills and knowledge in
order to maintain and improve performance lev-
els [13].

H5 Learners reporting a high personal capacity (time,
energy and mental space) for transfer are more likely
to actually exhibit learning transfer [16].

H6 Learners exhibiting a high-spacing learning routine
are more likely to exhibit learning transfer than
learners with a low-spacing learning routine.
Here, high-spacing refers to a larger number of
discrete learning sessions than low-spacing with
few learning sessions each lasting a long time (i.e.
“cramming”) [21, 11, 5].

Finally, for RQ3 we investigate the following hypothesis:

H7 The amount of exhibited transfer decreases over
time [24].
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From Hypotheses To Measurements
Table 1 shows an overview of the data sources used to
investigate each research hypothesis.

Pre Post edX GitHub
CS CS Logs Logs

H1 X X
H2 X X X
H3 X X
H4 X X
H5 X X
H6 X X
H7 X

Table 1. Overview of the different data sources used to
investigate each research hypothesis. CS refers to the
conducted Course Surveys (before and after the course).

To explore H1 we relate learners’ performance during
the course (as found in the edX logs) to their develop-
ment activities on GitHub.

To determine the impact of learners’ motivation on learn-
ing transfer (H2), we distinguish learners based on their
answers to several pre/post-course survey questions we
manually established as being motivation-related. To de-
termine intrinsic motivation we identified six question-
answer pairs including the following two3:

• What describes your interest for registering for this course?; An-
swer: My curiosity (in the topic) was the reason for me to sign up
for this course [Pre CS, 5-point Likert]

• Express your level of agreement with the following statement.; An-
swer: Course activities piqued my curiosity. [Post CS, 5-point
Likert]

Similarly, for extrinsic motivation we determined nine
appropriate question-answer pairs, including:

• What describes your interest for registering for this course? Choose
the one that applies to you the most; Answer: My current occupa-
tion motivated me to enroll in the course. [Pre CS, 5-point Likert]

• Considering your experience in this, how much do you agree with
the following statement?; Answer: The course was compulsory for
me [Post CS, Multiple choice]

Learners’ belief in their ability to complete a task (H3),
can be inferred based on a question asking the learners to
express their level of agreement with a set of statements
from the validated General Self-Efficacy Scale [8]:

• I can describe ways to test and apply the knowledge created in this
course. [Post CS, 5-point Likert]

• I have developed solutions to course problems that can be applied
in practice. [Post CS, 5-point Likert]

• I can apply the knowledge created in the course to my work or
other non-class related activities. [Post CS, 5-point Likert]

The prior expertise of learners (H4) can both be inferred
from survey questions as well as from the GitHub logs.
The questions utilized are:

• Is your educational background related to (Functional) Program-
ming? [Pre CS, 5-point Likert]

3Due to space constraints, only a subset of the identified
question/answer pairs are shown.

• Do you have professional experience in this field? [Pre CS, 5-point
Likert]

The personal capacity (H5) of a learner is inferred based
on two questions:

• Did any of the following negatively affect your participation in the
course? [Post CS, 5-point Likert]

• Considering your experience in this course, how much did each of
the technical issues affect your participation? [Post CS, 5-point
Likert]

Responses to these questions allow learners to share
which factors inhibited and distracted them from en-
gaging with the course. Examples of responses to these
questions range from personal problems, such as family
obligations and medical issues, to technical trouble, such
as slow Internet or hardware problems.

H6 considers the manner in which learners learn and
can be inferred solely based on edX log traces which
will be explained in more detail in the section below.
Finally, H7, the extent to which functional programming
is employed and applied by the learners over time can be
inferred from GitHub logs alone.

edX Logs
For each learner, we collect all available traces (between
October 1 and December 31, 2014), such as the learner’s
clicks & views, provided answers to MC questions as
well as forum interactions. Using the MOOCdb toolkit4

we translate these low-level log traces into a data schema
that is easily queryable.

To investigate H6, for each learner the learning routine
is determined based on their edX logs. We partition the
learners into low-spacing and high-spacing types follow-
ing [21]. Initially, all learners are sorted in ascending or-
der according to their total time on-site. Subsequently
they are binned into ten equally-sized groups. Within
each group, the learners are sorted according to the num-
ber of distinct sessions on the site and based on this or-
dering divided into two equally-sized subgroups: learners
with few sessions (low-spacing) and learners with many
sessions (high-spacing). In this manner, learners spend-
ing similar amounts of time (in total) on the course site
can be compared with each other.

GitHub Logs
We identify edX learners on GitHub through the email
identifiers attached to each edX and GitHub account. A
third of all learners that registered to FP101x are also ac-
tive on GitHub: 12,415 learners in total. This is likely to
be an underestimate of the true number of GitHub users
(people generally have multiple email accounts), as we
did not attempt to match accounts based on additional
user profile information.

GitHub provides extensive access to data traces asso-
ciated with public coding repositories, i.e. repositories

4http://moocdb.csail.mit.edu/

L@S 2016 · Flipped Session - Outside the MOOC April 25–26, 2016, Edinburgh, UK

412



visible to everyone5. GitHub is built around the git dis-
tributed revision control system, which enables efficient
distributed and collaborative code development. GitHub
not only provides relevant repository metadata (includ-
ing information on how popular a repository is, how
many developers collaborate, etc.), but also the actual
code that was altered. As the GitHub Archive6 makes all
historic GitHub data traces easily accessible, we relied on
it for data collection and extracted all GitHub data traces
available between January 1, 2013 and July 21, 2015. We
then filtered out all traces that were not created by our
edX learners, leaving us with traces from 10, 944 learn-
ers. Of the more than 20 GitHub event types7, we only
consider the PushEvent as vital for our analysis.

{
"_id" : ObjectId("55b6005de4b07ff432432dfe1"),
"created_at" : "2013-03-03T18:36:09-08:00",
"url" : "https://github.com/john/

RMS/compare/1c55c4cb04...420e112334",
"actor" : "john",
"actor_attributes" : {

"name" : "John Doe",
"email" : "john@doe.com"

},
"repository" : {

"id" : 2.37202e+06,
"name" : "RMS",
"forks" : 0,
"open_issues" : 0,
"created_at" : "2011-09-12T08:28:27-07:00",
"master_branch" : "master"

}
}

Figure 1. Excerpt of a GitHub PushEvent log trace.

Every time code is being updated (“pushed” to a reposi-
tory), a PushEvent is triggered. Figure 1 contains an ex-
cerpt of the data contained in each PushEvent. The most
important attributes of the event are the created at
timestamp (which allows us to classify events as be-
fore/during/after the running of FP101x), the actor (the
user doing the “push”) and the url, which contains the
URL to the actual diff file. While the git protocol also
allows a user to “push” changes by another user to a
repository (which is not evident from inspecting the diff
file alone), this is a rare occurrence among our learners:
manually inspecting a random sample of 200 PushEvents
showed 10 such cases. A diff file shows the difference
between the last version of the repository and the new
one (after the push) in terms of added and deleted code.
An example excerpt is shown in Figure 2. For each of
the identified 1, 185, 549 PushEvents by our learners, we
crawled the corresponding diff file, as they allow us to
conduct a fine-grained code analysis. As a first step, we
identified the additions and deletions a user conducts in
each programming language based on the filename exten-
sions found in the corresponding diff file. We consider

5Data traces about private repositories are only available to
the respective repository owner.
6https://www.githubarchive.org/
7https://developer.github.com/v3/activity/events/
types/

code updates in the following nine functional languages
as clear evidence for functional programming: Common
Lisp, Scheme, Clojure, Racket, Erlang, Ocaml, Haskell,
F# and Scala. We also log changes made in any of the
other 20 most popular programming languages found on
GitHub in the same manner. Any filename extension
not recognized is first checked against a blacklist (which
includes common filename extensions for images, com-
pressed archives, audio files, etc.) and if not found, the
change is classified as Other.

diff --git a/viewsA.rb b/viewsA.rb
index e37bca1..3ad75e4 100644
--- a/viewsA.rb
+++ b/viewsA.rb
@@ -26,6 +26,16 @@ def new

@shift = Shift.new
end

...
diff --git a/config/routes.rb b/config/routes.rb
index e576929..27ce68f 100644
--- a/config/routes.rb
+++ b/config/routes.rb
@@ -29,6 +29,7 @@

put ’secondary’
...

Figure 2. Excerpt of a diff file. Two files were changed
(viewsA.rb and routes.rb). The extension *.rb indicates
code written in Ruby.

RESULTS
We first present some basic characteristics of FP101x,
before delving into the analyses of our research questions
and hypotheses.

FP101x Overview
We partition our set of all registered FP101x learners ac-
cording to two dimensions: (i) learners with and without
a GitHub account, and (ii) learners with and without
prior expertise in functional programming. In the lat-
ter case, we consider only those learners that could be
identified on GitHub. We define Expert learners as
those who used any of our nine identified functional pro-
gramming languages before the start of the course to a
meaningful degree (i.e. more than 25 lines of functional
code being added). The characteristics of these learner
cohorts are listed in Tables 2 and 3.

When considering the GitHub vs. non-GitHub learners,
we observe significant differences along the dimensions
of engagement and knowledge:

• GitHub learners are on average more engaged with
the course material (significantly more time spent on
watching lecture videos and significantly more ques-
tions attempted).

• GitHub learners exhibit higher levels of knowledge
(significantly more questions answered correctly).

Zooming in on the GitHub learners and their functional
programming expertise, we find the differences to be en-
larged: Expert learners have a higher completion rate
(more than double that of non-Expert learners), attempt
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to solve significantly more problems and are significantly
more accurate in answering. Experts are also more en-
gaged in terms of forum usage - 8% post at least once
compared to 4% of the non-Expert learners.

All GH Non-GH
Learners Learners Learners

#Enrolled learners 37,485 12,415 25,070
Completion rate 5.25% 7.71% 4.03%
%Learners who watched
at least one video

40.84% 50.58% 36.02%

Avg. time watching
video material (in min.)

31.87 44.56 † 25.59 †

%Learners who tried
at least one question

23.28% 31.94% 18.99%

Avg. #questions learners
attempted to solve

22.07 31.29 † 17.51 †
Avg. #questions
answered correctly

18.30 26.54 † 14.22 †
Avg. accuracy of
learners’ answers

16.36% 23.41% † 12.86% †

#Forum posts 8,157 3,726 4,431
%Learners who posted
at least once

2.84% 4.27% 2.13%

Avg. #posts per learner 0.22 0.30 † 0.18 †

Table 2. Basic characteristics across all learners and their
partitioning into GitHub (GH) and non-GitHub learners.
Significant differences (according to Mann-Whitney) be-
tween GH and non-GH learners are marked with †(p <
0.001).

Expert Non-Expert
Learners Learners

#Enrolled learners 1,721 10,694
Completion rate 15.05% 6.53%
%Learners who watched
at least one video

64.44% 48.35%

Avg. time watching
video material (in min.)

69.61 † 40.53 †

%Learners who tried
at least one question

48.69% 29.24%

Avg. #questions learners
attempted to solve

57.86 † 27.02 †
Avg. #questions
answered correctly

50.24 † 22.73 †
Avg. accuracy of
learners’ answers

37.96% † 21.06% †

#Forum posts 1,612 2,114
%Learners who posted
at least once 7.55% 3.74%
Avg. #posts per learners 0.94 ‡ 0.20 ‡

Table 3. Basic characteristics when partitioning the
GitHub learners according to prior functional program-
ming expertise. Significant differences (according to
Mann-Whitney) between Expert and Non-Expert learn-
ers are marked with †(p < 0.001) and ‡(p < 0.01).

Finally, we note that we repeated this analysis on the
subset of engaged learners only, where we consider
all learners that attempted to solve at least one MC
question or watched at least one video. While the
absolute numbers vary, the trends we observe for the
different partitions of learners in Tables 2 and 3 remain
exactly the same.

Learning Transfer
Let us first consider the general uptake of functional pro-
gramming languages. We can split each learner’s GitHub
traces into three distinct sequences according to their
timestamp: traces generated before, during and after
FP101x. We are interested in comparing the before &
after and will mostly ignore the activities generated dur-
ing FP101x.

Expert Learners
Overall, 1,721 of all GitHub learners have prior func-
tional programming experience (our Expert learners).
1,165 of those are also engaged with FP101x (the remain-
der registered, but did not engage), leading to nearly a
third (29.4%) of all engaged GitHub learners having pre-
FP101x functional programming experience.

Most of our GitHub learners though are not continu-
ously coding functionally: Figure 3 shows for each month
of GitHub logs (January 2013 to July 2015) the unique
number of GitHub learners programming functionally -
while in 2013 less than 250 of our GitHub learners were
active per month, by 2015 this number has increased
to nearly unique 600 active users a month. Thus, the
trend to functional programming is generally increasing.
Most learners though are not actively using functional
languages on a monthly basis.

How much functional code do our engaged Expert learn-
ers produce over time? An answer to this question deliv-
ers Figure 4: here, for each month, the functional cod-
ing activities (calculated as the additions made in func-
tional languages as a fraction of all additions made in
recognized programming languages) are averaged across
all engaged Expert learners. Again we observe that
over the years functional programming has become more
popular. By September 2014 (right before the start of
FP101x), on average more than 36% of coding activi-
ties are functional. What is surprising (and somewhat
counter-intuitive) is the steady decline of functional ac-
tivities after the end of FP101x. If we restrict our en-
gaged Expert Learners to those 542 learners with func-
tional traces before and after FP101x (Figure 5), the re-
sults are more in line with our expectations: functional
programming is continuously gaining in popularity and a
peak in activities is observed in the two months follow-
ing FP101x8. Thus, 46.5% of engaged Expert learners
did continue to program functionally after the end of
FP101x.

Novice Learners
Most interesting to use are the Novice Learners: to
what extent do learners that did not program (mean-
ingfully) in functional languages before FP101x take it
up afterwards? We find 522 such learners — 4.3% of
all GitHub learners. If we restrict ourselves to engaged
GitHub learners, we are left with 336 Novice learners
(8.5% of all engaged GitHub learners). Figure 6 shows

8The drop in July 2015 is explained by the non-complete log
coverage of July (the log ends on July 21, 2015).
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the evolution of their functional programming usage over
time: the uptake after the end of FP101x is substantial,
on average more than 35% of all activities are conducted
subsequently in functional languages! While there is no
substantial increase after the initial uptake over time,
there is also no significant drop. Since the average can
only provide limited insights, we drill down to the in-
dividual user level in Figure 7: the usage of functional
programming is highly varied; 50% of the Novice Learn-
ers use it for less than 10% of their programming activi-
ties, while some learners almost exclusively code in func-
tional languages. Finally, we also consider which func-
tional languages these Novice learners code in. Figure 8
shows that a month after FP101x ended (January 2015),
Haskell contributions made up 48% of all contributions,
but continued dropping to a low of 14.5% in June 2015.
Scala on the other hand (the most popular functional
language in industrial settings) slowly rises in popular-
ity over time and by June 2015 makes up roughly half of
the functional contributions. Other functional languages
play less of a role. Conducting a similar analysis on our
engaged Expert learners (not shown here), we find that
on average across all months, 47% (σ = 7.4) of all func-
tional activities are in Scala, whereas 24.0% (σ = 5.5)
are in Haskell. The distribution of functional languages
is stable over time. The only outliers can be found in the
three months of FP101x, where Haskell contributions rise
significantly.

Figure 3. Number of unique users actively using a func-
tional language. FP101x ran during the highlighted region.

Transfer Learning Hypotheses
On which learners should (or can) we investigate our
seven research hypotheses? Ideally, we rely on all learn-
ers that engaged with the course and for whom GitHub
traces are available. However, for Expert learners we
are unable to determine the amount of transfer: since
our analysis of functional coding is based on activities
in functional languages (instead of a more fine-grained
analysis of the type of functional concepts employed),
we are not able to determine whether learners that
programmed functionally before acquired knowledge in
FP101x and applied it in practice (a direction of future
work). Only for the engaged Novice learners can we be
confident that FP101x actually impacted their program-
ming practice and that the observed transfer is likely a
result of FP101x.

Considering H1, we observe a transfer rate of at least
8.5% (i.e. among the 3,965 engaged GitHub learners we

Figure 4. Fraction of functional programming activities
among the 1,165 engaged Expert Learners. FP101x ran
during the highlighted region.

Figure 5. Fraction of functional programming activities
among the 542 engaged Expert Learners with functional
activities before & after FP101x. FP101x ran during the
highlighted region.

found 336 Novice learners that began programming func-
tionally after FP101x). This percentage can be consid-
ered as a lower bound, as we (due to the reasons listed
above) do not consider engaged Expert learners here.
Only a minority (70) of the 336 engaged Novice learners
did pass FP101x, indicating that transfer and pass rate
are related but not synonymous. In fact, while the 70
Novice learners that successfully completed the course
remained mostly active until the final course week (Fig-
ure 9), nearly 40% of all engaged Novice learners became
inactive after week 1.

To investigate H2, H3, H4, H5 and H6, for each hy-
pothesis, we partition our 336 engaged Novice Learners
who made the transfer according to the investigated di-
mensions (e.g. intrinsic vs. extrinsic motivation). Re-
call that the partitioning of the learners relies on their
self-reported abilities in the pre- and post-course sur-
veys. Similar to the retention rate, the return rate for
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Figure 6. Fraction of functional programming activities
among the 336 engaged Novice Learners with functional
activities after FP101x. FP101x ran during the highlighted
region.

Figure 7. Distribution of functional programming activ-
ities among the 336 engaged Novice Learners with func-
tional activities after FP101x. FP101x ran during the high-
lighted region.

Figure 8. Functional languages used by the 336 engaged
Novice Learners during and after FP101x. Best viewed in
color.

such questionnaires is very low and many learners do
not participate in these surveys for a variety of reasons.
Table 4 shows the partitioning of our engaged Novice

Figure 9. Fraction of the 336 engaged Novice learners
remaining active in each course week. 70 Novice learners
completed FP101x successfully, 266 did not complete it.

learners based on their survey data. The majority of
learners cannot be assigned to a dimension due to a lack
of data. Despite the low numbers, we do observe that the
transfer learning hypotheses seem to hold in FP101x (for
those learners for which it is possible to measure their
effect): learners are more likely to make the transfer if
(i) they are intrinsically motivated, (ii) have high self-
efficacy, (iii) are more experienced programmers, and
(iv) report a high personal capacity. Even though the
number of learners we were able to investigate are small,
we consider this as first evidence that transfer learning
hypotheses also hold in the MOOC setting.

Dimensions N/A

H2 Motivation Extr.: 12 Intr.: 28 296
H3 Self-efficacy High: 23 Low: 5 308
H4 Experience A lot: 42 Little: 25 269
H5 Personal capacity High: 22 Low: 10 304

Table 4. Partitioning of the 336 Novice learners accord-
ing to several dimensions. The last column shows the
number of learners that could not be assigned (N/A) to
a dimension.

Groups Low spacing High spacing

0 2 2
1 9 9
2 6 16
3 10 20
4 21 21
5 19 16
6 19 22
7 20 22
8 16 29
9 27 30

Table 5. The number of Novice Learners falling into spac-
ing groups.
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To answer H6 (high-spaced learners are more likely to
transfer), we binned all GitHub learners according to
their total time and number of distinct sessions in the
FP101x edX environment, as outlined earlier. This cre-
ates 10 groups, with learners in Group 0 spending the
least amount of time and learners in Group 9 spend-
ing the most amount of time on the course site. Thus,
each group contains those learners that roughly spent
the same amount of time on the site. Further, within
each group, learners are divided according to the num-
ber of distinct sessions. In Table 5 we report how many
engaged Novice learners fell into each group and which
part of the group — the high-spacing or the low-spacing
one. While 187 engaged Novice learners are classified
as high-spacing, 149 are classified as low-spacing. Thus,
there is some indication that H6 holds. However, the
observed difference is rather small.

To conclude this section, we lastly consider H7. In con-
trast to the hypothesis (transfer decreases over time), we
neither observe a significant decrease nor increase after
the initial uptake as evident in Figures 6 and 7.

A Qualitative Analysis
We have found similarities and differences between trans-
fer in classroom learning and our MOOC. Instead of
speculating about the reasons for these differences, we
designed a follow-up survey (containing 10 questions
about learners’ functional programming experiences be-
fore and after FP101x) and distributed it to subsets of
GitHub learners in August 20159. A second purpose of
this questionnaire is to verify whether GitHub logs offer
a good approximation of our learners’ true behaviour.
We partitioned the engaged GitHub learners into eight
categories:

A Novice learners that completed the course but did not trans-
fer (i.e. we did not observe functional GitHub traces after
FP101x). #Survey responses: 131 (32% return rate).

B Expert learners that completed the course but did not
transfer. #Survey responses: 15 (39%).

C Novice learners that completed the course and transferred
(i.e. we observed functional GitHub traces after FP101x). #Sur-
vey responses: 11 (61%).

D Novice learners that did not complete the course, but trans-
ferred. #Survey responses: 1 (3%).

E Expert learners that completed the course and continued
programming functionally (did they transfer?). #Survey
responses: 20 (56%).

F Expert learners that did not complete the course but did
program functionally after FP101x. #Survey responses: 8
(16%).

G Novice learners that were engaged in the course (but not com-
pleted) and did not transfer. #Survey responses: 93 (6%).

H Expert learners that were engaged in the course (but not com-
pleted) and did not transfer. #Survey responses: 4 (7% return
rate).

How accurate are GitHub traces as approxima-
tion of learners’ functional programming activ-
ities? Of those learners we had identified as Novices,
9All contacted learners had consented to additional contact.

63% also self-reported as such. Of the learners we esti-
mated to have some prior functional programming expe-
rience, 77% self-reported prior experience. In particular,
the latter number is intriguing: based on our stringent
methodology, we can be confident that all of our iden-
tified Expert learners did indeed functionally program
before FP101x, though about a quarter self-reports oth-
erwise. Of the learners we identified as having demon-
strated learning transfer, 88% also self-reported as do-
ing so. Of those we identified as not having demon-
strated learning transfer, only 37% self-reported of not
having applied anything they had learnt. An explana-
tion for this discrepancy is based on the non-exclusive
use of GitHub: while 73% indicated that they use GitHub
for either work or personal coding projects, 65% use a
Private/Employer’s repository service, and 39% use Bit-
Bucket. While 73% is promising in that it accounts for
nearly three quarters of all learners, we could only detect
users who use the same email address for both their edX
and GitHub account.

What are the main reasons for learners not to
transfer their acquired functional programming
skills? 80% of learners reporting a reason for not trans-
ferring their acquired skills report a lack of opportunities.
Many learners go on to explain that the programming
language standards in their work-place do not allow them
to practice what they have learned. Another common
sentiment is that it is difficult for some experienced pro-
grammers to suddenly change their ways. For example,
when asked why they did not apply what they learned
in FP101x to either work or personal projects, one re-
spondent shared, “It takes time and effort to change old
programming habits.” And another shared a similar sen-
timent: “[It’s] hard to think functionally after 25 years
of imperative [programming] experience.”

CONCLUSIONS
We have investigated the extent of learning transfer in
the MOOC setting and introduced the use of a social-
Web based data source (i.e. GitHub) to complement the
learner traces collected within MOOC environments. Fo-
cusing on one-third of FP101x learners we were able to
link to GitHub, we made several important findings:

(1) Most transfer learning findings from the classroom
setting translate into the MOOC setup; large discrep-
ancies were only found for H1: the amount of observed
transfer and H7: the development of transfer over time.

(2) The observed transfer rate in MOOCs is low. We
found that 8.5% of engaged learners were indeed exhibit-
ing transfer to varying degrees in our GitHub traces. We
acknowledge that a substantial amount of programming
occurs outside of GitHub (e.g. in private employer repos-
itories). While the traces we gather offer many new in-
sights by following learners beyond the MOOC platform
for an extended period of time, considering one external
data source alone is a limiting factor.
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(3) The amount of transfer, operationalized as the frac-
tion of functional coding is varying highly: about 50% of
the learners transferring code less than 10% of the time
functionally, while a small minority almost exclusively
turns to functional languages.

(4) After the end of FP101x, learners making the trans-
fer quickly identified the most industrially-relevant func-
tional language at this moment (Scala). Over time their
activities in Scala increased significantly, while their ac-
tivities in Haskell (the language of FP101x) decreased.
Overall though, after the initial uptake of functional pro-
gramming, the fraction of functional activities (between
35%-40%) of all coding activities remained constant.

The limitations of the current study (only 33% of learn-
ers could be coupled to a GitHub account and our ex-
ploratory analysis has been conducted on the program-
ming language type level) naturally lead to three direc-
tions for future work: (i) instead of focusing on the
amount of code added per language, a more detailed
analysis will determine the particular functional con-
cepts employed and match them with the course ma-
terial, (ii) programming languages are taught in a vari-
ety of MOOCs, it is an open question whether the same
methodology is applicable across a variety of courses, and
lastly, (iii) we will move beyond the GitHub platform and
consider alternative external data sources.
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